Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2601, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297114

RESUMO

This work provides the first experimental proof of an increased neutron capture photon signal following the introduction of boron to a PMMA phantom during helium and carbon ion therapies in Neutron Capture Enhanced Particle Therapy (NCEPT). NCEPT leverages [Formula: see text]B neutron capture, leading to the emission of detectable 478 keV photons. Experiments were performed at the Heavy Ion Medical Accelerator in Chiba, Japan, with two Poly(methyl methacrylate) (PMMA) targets, one bearing a boron insert. The BeNEdiCTE gamma-ray detector measured an increase in the 478 keV signal of 45 ± 7% and 26 ± 2% for carbon and helium ion irradiation, respectively. Our Geant4 Monte Carlo simulation model, developed to investigate photon origins, found less than 30% of detected photons originated from the insert, while boron in the detector's circuit boards contributed over 65%. Further, the model investigated detector sensitivity, establishing its capability to record a 10% increase in 478 keV photon detection at a target [Formula: see text]B concentration of 500 ppm using spectral windowing alone, and 25% when combined with temporal windowing. The linear response extended to concentrations up to 20,000 ppm. The increase in the signal in all evaluated cases confirm the potential of the proposed detector design for neutron capture quantification in NCEPT.

2.
Sensors (Basel) ; 22(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214315

RESUMO

Spotting radioactive material in waste is of paramount importance for environment protection. This is particularly challenging when orphan sources are hidden in scrap metal that shields their activity from the traditional detectors in the portals scanning incoming trucks. In order to address this issue, we present a wireless and compact SiPM-based gamma spectrometer compatible with strong magnetic fields (0.1 T) to be installed in the bore of the lifting electromagnets to scan reduced volumes of metal and thus achieve higher sensitivity. The microcontroller-based instrument provides 11% energy resolution (at 662 keV), an energy range from 60 keV to 1.5 MeV, a max. count rate of 30 kcps, a weight <1 kg, and a power consumption <1 W. The results of its extensive characterization in the laboratory and its validation in the field, including operation in a scrap yard as well as on a drone, are reported.


Assuntos
Monitoramento Ambiental , Metais , Fenômenos Magnéticos , Metais/análise
3.
Rev Sci Instrum ; 92(6): 063306, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243524

RESUMO

LAILA is a miniaturized eight-channel electronic readout system for compact γ-ray detectors, combining high-resolution spectroscopy capability with position sensitivity. Compactness is achieved by the combination of a novel CMOS front-end ASIC (Application-Specific Integrated Circuit) for analog processing of a large signal current from Silicon PhotoMultiplier (SiPM) solid-state photodetectors, with a microcontroller-based data acquisition system. The adoption of automatic gain regulation in the gated-integrator stage of the ASIC offers an 84 dB dynamic range, combining single-photon sensitivity with an extended input photon energy range (20 keV-4 MeV, using 30 µm-cell SiPMs). Using this module with properly merged 144 SiPM pixels coupled to a 3 in.-thick lanthanum bromide scintillation crystal, a 3% energy resolution at 662 keV and 1 cm spatial resolution in the estimation of the interaction coordinates are experimentally demonstrated in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...